
Greenwich Public Schools Curriculum Overview

Adapted from 2011 Grant Wiggins & Jay McTighe
Greenwich Public Schools, Updated June 2021

INTRODUCTION TO COMPUTER PROGRAMMING A

Personalized learning is achieved through standards-based, rigorous and
relevant curriculum that is aligned to digital tools and resources.

Note: Teachers retain professional discretion in how the learning is presented based
on the needs and interests of their students.

Course Description
Introduction to Computer Programming A
(Concentration in JavaScript)
1st or 2nd semester
027205/027206 6 Blocks .5 Credit
Prerequisites: C or better in Algebra 1, Extended Algebra, or Algebra/Geometry Course 2.
This semester course is designed to introduce the most fundamental web-based concepts and how to
use them in JavaScript. Topics include data types, functions, loops, control flow, canvas, and
interactivity. Emphasis is placed on real-world understanding through a project-based learning
environment. This course is the foundation for the next sequence of computer science classes.

Unit Guide
Unit 0: Introduction to Programming
Unit 1: Introduction to JavaScript
Unit 2: Binary and Hexadecimal
Unit 3: Conditionals
Unit 4: Arrays
Unit 5: The DOM
Unit 6: Final Project

Computational Thinking Practices
● Program Design and Algorithm Development
● Code Logic
● Code Implementation
● Code Testing
● Documentation

Mathematical Practices
● Make sense of problems and persevere in solving them.
● Reason abstractly and quantitatively.
● Use appropriate tools strategically.
● Attend to precision.
● Look for and make use of structure.
● Look for and express regularity in repeated reasoning.

Adapted from 2011 Grant Wiggins & Jay McTighe
Greenwich Public Schools, Updated June 2021

Enduring Understandings
● Code developers create and innovate using an iterative design process that is user-focused,

that incorporates implementation/feedback cycles, and that leaves ample room for
experimentation and risk-taking.

● Programs can be used to process data, which allows users to discover new information and
create new knowledge.

● The way a computer represents data internally is different from the way the data are
interpreted and displayed for the user. Programs are used to translate data into a
representation more easily understood by people.

● To find specific solutions to generalizable problems, programmers represent and organize
data in multiple ways.

● The way statements are sequenced and combined in a program determines the computed
result. Programs incorporate iteration and selection constructs to represent repetition and
make decisions to handle varied input values.

Essential Questions
● What types of problems can be solved more easily with a computer, and what types can be

solved more easily without a computer? Why?
● How does one use an IDE and event-driven programming to build an app?
● How do multiple programming languages work together in a computer application? What are

the roles of HTML, CSS and javaScript in a browser-based application? What are the specific
syntax rules of each language?

● How can we store data in a program to solve problems?
● What is the binary number system that underlies all digital representation? How can binary

numbers be used to represent all digital data?
● How do video games group the different actions for a player based on what key is pressed on

the keyboard or controller? How do apps group different actions together based on user
interaction, such as pressing buttons?

● How can students use if or else statements to control programs? How can functions be called
from various locations in a program? What are the advantages of nesting a conditional
statement within another conditional statement?

● How do variables of both simple and structured data, such as, lists, enable us to manage
the complexity of a program?

● What might happen if you completed the steps in your regular morning routine to get ready
and go to school in a different order? How might the reordering affect the decisions you make
each morning?

● Why is there a need to debug?
● Why is it important to test code on a variety of test cases?
● How does testing the program with a wide range of values help confirm its effectiveness?

Resources and Assured Experiences
Online resources:

W3schools.com
Khan Academy
Code.org

Caret IDE, repl.it once it completes digital tool authorization

Summative Assessments
Formative Assessments
Classwork
Preparation

GHS Capstone Task: Capstone Vision of the Graduate Capacity: #6 - Generates innovative, creative
ideas and products

Adapted from 2011 Grant Wiggins & Jay McTighe
Greenwich Public Schools, Updated June 2021

Quarterly Grading - Quarter Grades will be determined using the following components:
● Participation (includes Classwork) = 20%
● Preparation (includes Homework) = 20%
● Assessments (both Summative & Formative) = 60%

CSTA Computer Standards:
3A-AP-13 Create prototypes that use algorithms to solve computational problems by leveraging
prior student knowledge and personal interests.
3A-AP-14 Use lists to simplify solutions, generalizing computational problems instead of
repeatedly using simple variables.
3A-AP-17 Decompose problems into smaller components through systematic analysis, using
constructs such as procedures, modules, and/or objects.
A-AP-18 Create artifacts by using procedures within a program, combinations of data and
procedures, or independent but interrelated programs.
3A-AP-19 Systematically design and develop programs for broad audiences by incorporating
feedback from users.
3B-AP-10 Use and adapt classic algorithms to solve computational problems.
3B-AP-14 Construct solutions to problems using student-created components, such as
procedures, modules and/or objects.
3B-AP-22 Modify an existing program to add additional functionality and discuss intended and
unintended implications (e.g., breaking other functionality).

	INTRODUCTION TO COMPUTER PROGRAMMING A
	Course Description
	Unit Guide
	Computational Thinking Practices
	Mathematical Practices
	Enduring Understandings
	Essential Questions
	Resources and Assured Experiences
	Quarterly Grading - Quarter Grades will be determined using the following components:
	CSTA Computer Standards:

